Improved elevated temperature performance of Al-intercalated V(2)O(5) electrospun nanofibers for lithium-ion batteries.
نویسندگان
چکیده
Al-inserted vanadium pentoxide (V2O5) nanofibers (Al-VNF) are synthesized by simple electrospinning technique. Powder X-ray diffraction (XRD) patterns confirm the formation of phase-pure structure. Elemental mapping and XPS studies are used to confirm chemical insertion of Al in VNF. Surface morphological features of as-spun and sintered fibers with Al-insertion are investigated by field-emission scanning electron microscopy (FE-SEM). Electrochemical Li-insertion behavior of Al-VNFs are explored as cathode in half-cell configuration (vs. Li) using cyclic voltammetry and galvanostatic charge-discharge studies. Al-VNF (Al0.5V2O5) shows an initial discharge capacity of ∼250 mA h g(-1) and improved capacity retention of >60% after 50 cycles at 0.1 C rate, whereas native VNF showed only ∼40% capacity retention at room temperature. Enhanced high current rate and elevated temperature performance of Al-VNF (Al1.0V2O5) is observed with improved capacity retention (∼70%) characteristics. Improved performance of Al-inserted VNF is mainly attributed to the retention of fibrous morphology, apart from structural stabilization during electrochemical cycling.
منابع مشابه
Electrospinning of nanomaterials and applications in electronic components and devices.
Electrospinning of nanomaterial composites are gaining increased interest in the fabrication of electronic components and devices. Performance improvement of electrospun components results from the unique properties associated with nanometer-scaled features, high specific surface areas, and light-weight designs. Electrospun nanofiber membrane-containing polymer electrolytes show improved ionic ...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کاملLow temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes.
Ultrathin crystalline ZrO(2) nanofilms have been facilely deposited on LiMn(2)O(4) particles at 120 °C using atomic layer deposition. The ZrO(2) coating shows high crystallinity, conformality and homogeneity, which contribute to considerably improved electrochemical performance of LiMn(2)O(4) at elevated temperature in lithium-ion batteries.
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2012